

Inteligencia Constructiva Digital: Armadura de obra gruesa

Edificio Tempo Mackenna (2023)

Temas

- I. ¿De qué se trata?
- 2. Llamado a innovar
- 3. Sistema de trabajo
- 4. Novedades a nivel de industria
- 5. Impacto en materiales
- 6. Impacto en Mano de Obra Directa
- 7. Impacto general
- 8. Conclusiones y recomendaciones

¿De qué se trata?

Colaboración estratégica entre mandante, calculista, empresa constructora, Planta de CYD industrializado y siderúrgica, resultando en una nueva metodología de trabajo:

icafal

ARMACERO.

- Inmobiliaria Puangue
- Icafal Ingeniería y Construcción
- Ruiz y Saavedra
- Armacero
- AZA

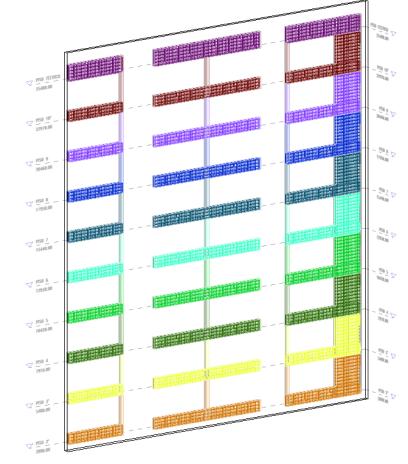
Se creó una mesa de trabajo transversal donde se puso a disposición del proyecto todo el know how de la cadena de valor de la obra gruesa, para optimizar esta partida en la etapa de proyecto y construcción.

La necesidad abordada fue la optimización de la gestión y documentación de la enfierradura, mediante tecnología de punta en etapas tempranas

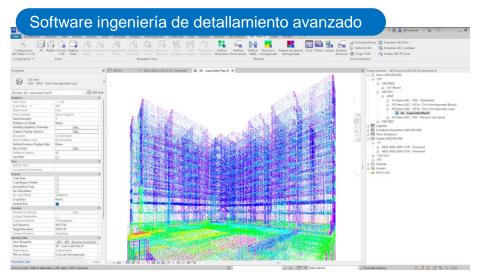
LLAMADO A INNOVAR

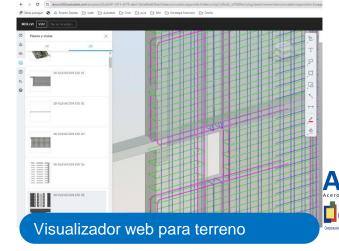
La gestión tradicional de proyectos tiene una serie de desafíos

- Estandarizar información para colaboración entre partes
- Trazabilidad efectiva desde el diseño hasta la construcción
- Agilidad en corrección oportuna de desviaciones
- Minimizar intermediarios y malentendidos
- Eliminar duplicidad de trabajo


"Como resultado se plantea la co-creación de un nuevo sistema de trabajo. En este caso, la necesidad abordada fue la optimización de la gestión y documentación de la enfierradura, mediante tecnología de punta en etapas tempranas".

El equipo de trabajo y la tecnología disponible para el proyecto permitió rediseñar la metodología de trabajo tradicional al incorporar.


- Modelo BIM 100% construible desde etapa de diseño, de administración colaborativa y con gobernanza clara
- Detallamiento avanzado de enfierradura en 3D, con información detallada para fabricación y trazabilidad en obra. Herramientas informáticas desarrolladas especialmente para este tipo de proyectos.
- Optimización de proyecto de cálculo: cubicaciones y pérdidas
- Conexión automática de modelo 3D con planta de corte y doblado 100% confiable. Eliminando la digitación manual.
- Pedido de obra a planta de acuerdo a logística y ciclos de trabajo propios de su construcción, gracias al paquetizado generado en etapa de diseño.



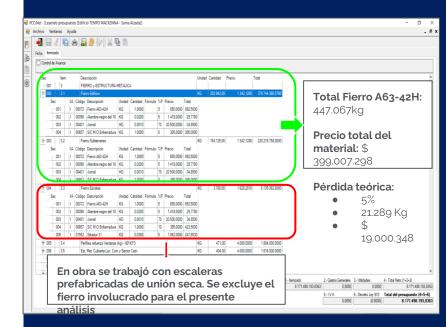
- Construcción Digital. Modelo 100% Construible.
- Metadata flexible para gestión de enfierradura
- Base de datos con representación gráfica 3D
- Conexión directa que elimina duplicidad de trabajo

icafal

RUIZ SAAVEDRA INGENIERIA

ARMACERO.

Novedad a nivel de industria


- INTEGRACIÓN TRANSVERSAL Y TEMPRANA. Todos los actores de la obra gruesa reunidos en etapa de diseño.
- Metodología sencilla que no implica costos adicionales ni conocimientos especiales del equipo de obra.
- Las obras fácilmente pueden trabajar con su logística propia, el sistema es flexible.
- Traspaso efectivo del conocimiento interdisciplinario.
 Anticipación de conflictos en obra.
- Reducción de tiempos de respuesta y cantidades de RDI's.
- Tecnología de punta que habilita el desarrollo del proyecto en plazos reales.
- Tecnología interconectada en tiempo real y validada por la cadena completa.

Impacto en Materiales

Presupuesto tradicional 447 ton
 V/S
 Cubicación BIM 400 ton

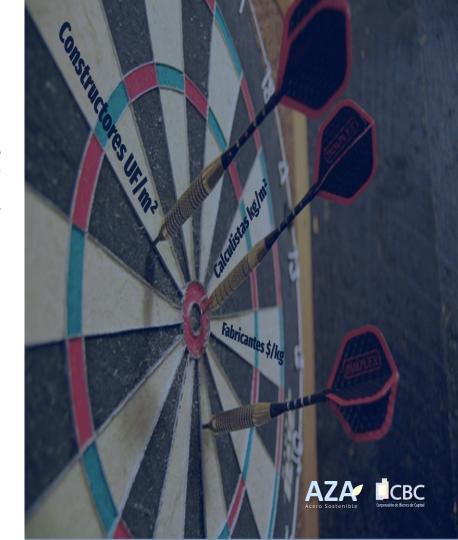
Pérdida teórica tradicional 12% (47 ton)
 V/S
 Resultados reales 1,8 % (6,7 ton)

Impacto en Mano de Obra Directa

- Supervisor de enfierradura deja de cubicar y desarrollar despiece, sólo coordina pedidos de enfierradura
- Una cuadrilla tradicional considera un cortador/doblador cada 6 maestros (una cuadrilla). Este cargo deja de existir
- Aumento del rendimiento de montaje de 170 a 220 kg/Hombre día
- Ahorro de 12% del presupuesto de instalación de enfierradura, por optimización de HH en instalación

Impacto Global

- Reducción de accidentes por cortado y doblado industrializado.
- Ahorro total de 40 \$MM en conceptos de material, residuos y mano de obra directa.
- Oportunidad de optimizar el ciclo de obra gruesa (enfierradura, moldaje y hormigón), apalancado en un mayor rendimiento de los enfierradores.
- Impacto en duración total de la etapa de obra gruesa. En obras similares se tienen retrasos de 40 días hábiles bajo el sistema tradicional, resultando en aproximadamente \$120 MM en gastos generales de construcción.
- Maqueta digital avanzada de obra gruesa con toda la documentación para la operación y mantenimiento del activo.



Conclusiones

 La optimización de las partidas independientes, sin considerar el impacto en otras partidas, genera un proyecto ineficiente.

Ejemplo de esto es la inserción de enfierradura productiva, fácil de fabricar y montar, que acelera los tiempos de ejecución impactando positivamente en el plazo y ciclos de construcción, reduciendo incluso gastos generales de obra, que son más relevantes que el aumento de material a usar.

- El producto final que llega a la obra es resultado de un trabajo coordinado y anticipado por el ingeniero, la inmobiliaria, la constructora y el proveedor del material.
- Al aumentar el rendimiento de la partida enfierradura, hay una oportunidad de acelerar el ciclo de obra gruesa en instalación de moldaje y hormigonado.
- La construcción virtual anticipada permite visualizar y anticipar posibles contratiempos en etapa de construcción. En la eventualidad de un incidente real, la trazabilidad y capacidad del sistema, permite una rápida reacción.

